

NUS-IDS at FinCausal 2021: Dependency Tree in Graph Neural Network for Better Cause-Effect Span Detection

Fiona Anting Tan, See-Kiong Ng Institute of Data Science National University of Singapore, Singapore tan.f@u.nus.edu, seekiong@nus.edu.sg

TASK

01

Cause-Effect Span Detection aims to identify the Cause and Effect spans in text.

MOTIVATION

Dependency parsing can help identify arguments in a sentence.

Cause Effect Other

⁰³We include dependency tree features into our model via graph neural network.

Shares of NYSE SZC traded down \$0.11 during midday trading on Wednesday , <mark>hitting \$13.65.</mark> Lastly, there are the 85,000 retail shareholders, some of whom live close to the mine site in North Yorkshire and had invested in a bid to boost the fortunes of the local economy.

OUR APPROACH

⁰⁴ We converted the span detection task into a token classification task.

⁰⁵ Our model builds on a baseline BERT token classifier with Viterbi decoding.

We experimented with two pretrained BERT language models to encode texts.

⁰⁷ We incorporate dependency relations via a graph neural network (GNN) to obtain graph embeddings.

© Copyright National University of Singapore. All Rights Reserved.

GCN utilizes node attributes to construct representations.

- Nodes: BERT+POS embeddings
- Edges: Dependency relations

Image Source: https://dsgiitr.com/blogs/graphsage/

⁰⁷ We incorporate dependency relations via a graph neural network (GNN) to obtain graph embeddings.

⁰⁹ Graph representations are concatenated with other embeddings before feeding to a classifier.

RESULTS

10 Our model outperforms the baseline in crossvalidation and during the competition.

Main results: F1 scores

CV F1 Test F1

11 POS features, node features, and BiLSTM layer are all important components in our Proposed model.

CV F1 scores

96.50%

© Copyright National University of Singapore. All Rights Reserved.

Index	Baseline	Proposed	Right?
0036	<e>Future sales agreements with suppliers in-</e>	<c>Future sales agreements with suppliers in-</c>	Base-
.000	creased during the period, and aggregate con-	creased during the period, and <e>aggre-</e>	line
11	tracted sales volumes are now 11.7m tonnes per	gate contracted sales volumes are now 11.7m	
	annum, following <c>new European sup-</c>	tonnes per annum, following new European	
	ply agreements.	supply agreements.	
0270	<e> It comes with a £250 free overdraft and</e>	<c>It comes with a £250 free overdraft</c> and	Base-
.000	requires a £1,000 monthly deposit to	requires a £1,000 monthly deposit to <e>avoid a</e>	line
09	<c>avoid a £10 monthly fee.</c>	£10 monthly fee.	
0209	<c>Fiserv believes that this business combina-</c>	<c>Fiserv believes that this business combina-</c>	Prop-
.000	tion makes sense from the complementary assets	tion makes sense from the complementary assets	osed
33	between the two companies, projecting higher rev-	between the two companies, <e>projecting</e>	
	enue growth than <e>it would achieve on</e>	higher revenue growth than it would achieve on	
	its own and costs savings of about \$900 million	its own and costs savings of about \$900 million	
	over five years.	over five years.	
0003	<e>Additionally, the Congress provided \$125</e>	<e>Additionally, the Congress provided \$125</e>	Prop-
.000	million in the current fiscal year for sustainable	million in the current fiscal year for <c>sus-</c>	osed
19	landscapes programming to <c>prevent for-</c>	tainable landscapes programming to prevent for-	
	est loss.	est loss.	

Table 3: Predicted Cause-Effect spans for CV set from seed = 916 on first fold (i.e. K0). Notes. Cause and Effect spans highlighted in green and orange respectively.

© Copyright National University of Singapore. All Rights Reserved.

12

Thank you.

Fiona Anting Tan tan.f@u.nus.edu https://github.com/tanfiona/CauseEffectDetection

© Copyright National University of Singapore. All Rights Reserved.