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Cause-Effect Span Detection aims to identify the 
Cause and Effect spans in text.
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TASK
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Dependency parsing can help identify arguments in 
a sentence.
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MOTIVATION
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We include dependency tree features into our model 
via graph neural network.
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We converted the span detection task into a token 
classification task.
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OUR APPROACH
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Our model builds on a baseline BERT token 
classifier with Viterbi decoding.
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We experimented with two pretrained BERT 
language models to encode texts.
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bert-base-cased

bert-large-cased
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We incorporate dependency relations via a graph 
neural network (GNN) to obtain graph embeddings. 
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GCN utilizes node attributes to 
construct representations.
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Image Source: https://dsgiitr.com/blogs/graphsage/

• Nodes: BERT+POS embeddings

• Edges: Dependency relations

https://dsgiitr.com/blogs/graphsage/
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We incorporate dependency relations via a graph 
neural network (GNN) to obtain graph embeddings. 
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Graph representations are concatenated with other 
embeddings before feeding to a classifier.
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Our model outperforms the baseline in cross-
validation and during the competition.
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POS features, node features, and BiLSTM layer are 
all important components in our Proposed model.
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Thank you.

Fiona Anting Tan

tan.f@u.nus.edu

https://github.com/tanfiona/CauseEffectDetection
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