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TASK
Cause-Effect Span Detection aims to identify the

Cause and Effect spans in text.
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MOTIVATION
Dependency parsing can help identify arguments in

a sentence.
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We include dependency tree features into our model
via graph neural network.

Shares of NYSE SZC traded down $0.11 during midday
trading on Wednesday , hitting $13.65.

Lastly, there are the 85,000 retail shareholders, some of
whom live close to the mine site in North Yorkshire and had
invested in a bid to boost the fortunes of the local economy.
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OUR APPROACH
We converted the span detection task into a token

classification task.
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Our model builds on a baseline BERT token
classifier with Viterbi decoding.
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We experimented with two pretrained BERT
language models to encode texts.
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We incorporate dependency relations via a graph
neural network (GNN) to obtain graph embeddings.
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GCN utilizes node attributes to
construct representations.

* Nodes: BERT+POS embeddings
« Edges: Dependency relations

l h(l) [
W L
I:f] shared parameters

on

011 f
\$ Wednesday
dnwn/
of «—NYSE—_ o mg,.—tfﬂ \$,‘_J:a
s7C hitting
\
$
\
13.65

ring

dday

.. ............. ‘. ‘“ ...... ‘ ................................................. W T LT 0 .
0 . . . . ..Q . .
INPUT GRAPH Compute graph for node A Compute graph for node B

Image Source: https://dsgiitr.com/blogs/graphsage/

© Copyright National University of Singapore. All Rights Reserved.



https://dsgiitr.com/blogs/graphsage/

We incorporate dependency relations via a graph
neural network (GNN) to obtain graph embeddings.
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Graph representations are concatenated with other
embeddings before feeding to a classifier.
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RESULTS

Our model outperforms the baseline in cross-
validation and during the competition.

© Copyright National Universi

Main results: F1 scores

Baseline

Proposed (bert-base)

95.91%

Proposed (bert-large)

95.57%

92.00% 93.00% 94.00% 95.00% 96.00% 97.00%
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POS features, node features, and BiLSTM layer are

all important components in our Proposed model.
CV F1 scores
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Index

Baseline

Proposed

Right?

0036
.000
11

<E>Future sales agreements with suppliers in-
creased during the period, and aggregate con-
tracted sales volumes are now 11.7m tonnes per
annum</E>, following <C>new European sup-
ply agreements.</C>

<C>Future sales agreements with suppliers in-
creased during the period, and</C> <E>aggre-
gate contracted sales volumes are now 11.7m
tonnes per annum< /E>, following new European
supply agreements.

Base-
line

0270
.000
09

<E> It comes with a £250 free overdraft and
requires a £1,000 monthly deposit</E> (o
<C>avoid a £10 monthly fee.</C>

<C>It comes with a £250 free overdraft</C> and
requires a £1,000 monthly deposit to <E>avoid a
£10 monthly fee.</E>

Base-
line

0209
000
33

<C>Fiserv believes that this business combina-
tion makes sense from the complementary assets
between the two companies, projecting higher rev-
enue growth than</C> <E>it would achieve on
its own and costs savings of about $900 million
over five years.</E>

<C>Fiserv believes that this business combina-
tion makes sense from the complementary assets
between the two companies</C>, <E>projecting
higher revenue growth than it would achieve on
its own and costs savings of about $900 million
over five years.</E>

Prop-
osed

0003
.000
19

<E>Additionally, the Congress provided $125
million in the current fiscal year for sustainable
landscapes programming</E> o <C>prevent for-
est loss.</C>

<E>Additionally, the Congress provided $125
million in the current fiscal year</E> for <C>sus-
tainable landscapes programming to prevent for-
est loss.</C>

Prop-
osed

Table 3: Predicted Cause-Effect spans for CV set from seed = 916 on first fold (i.e. K0). Nores. Cause and Effect
spans highlighted in green and orange respectively.
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Fiona Anting Tan
tan.f@u.nus.edu
https://github.com/tanfiona/CauseEffectDetection
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