

Constructing and Interpreting Causal Knowledge Graphs from News

AAAI 2023 Summer Symposium, AI4FinTech, 18 – 19 July 2023

Fiona Anting Tan, Debdeep Paul, Sahim Yamaura, Miura Koji, See-Kiong Ng https://arxiv.org/abs/2305.09359

INTRODUCTION

Understanding causal relationships in news helps users make informed decisions.

- Many jobs rely on news to learn about causal events in the past and present, to make informed decisions and predictions about the future.
- Such careers require stakeholders to have a general understanding of how one thing leads to another.
- How can we manage the large volume of news in an automated manner that helps users understand and interpret causal events?

INTRODUCTION

Parts Purchaser for EV Batteries

- Purchaser can search for relevant nodes to understand about the factors that affect battery demand from KG
- 2. Purchaser can set these *Cause* topics as new alerts

Search Node: battery_batteries_demand_solid_growing

Identified Causes:

- *fuel_environmental_concerns_increasing_costs:* The increasing high fuel costs and environmental concerns
- *battery_relationship_suppliers_close_industry:* together with the TESLA project ... promoting as part of the European battery projects
- *electric_vehicles_adoption_accelerated_growing:* the electric vehicle revolution

INTRODUCTION

Strategy Consultant

Causal O KG

Drivers of EV Growth:

- Potential to save money and lower pollution
- Government decisions
 - Several governments now provide subsidies for the use of environment - friendly vehicles
 - CO2 Emissions target in Europe
 - China aiming to keep a key market growing as the broader economy slows
 - Singapore has announced ambitious targets for 2040 when we plan to phase out internal combustion engine vehicles
- New investments and advancements in technology; Billions spent on R&D

Actively explores causal relations leading to and from topics about EV

Consequences of EV Growth:

- Increase in battery charging stations and battery backers
 - Greater efforts are needed to roll out enough charging infrastructure
 - Already struggling to keep up with strong demand for lithium - ion batteries
- More partnerships & joint ventures in this arena
 - Automobile giants like Tesla, Tata, Maruti and Hyundai have already established several partnerships
- Growth of the luxury SUV market in north America
- Tesla over took Toyota as the word's most valuable auto mater in July; Tesla is more valuable than the next six auto makers combined

METHODOLOGY

We extract, cluster and represent of causal relations in order to construct our knowledge graph.

Extraction

Clustering & Representation

METHODOLOGY

We extract, cluster and represent of causal relations in order to construct our knowledge graph.

We focused on news from the electronics and supplychain industry.

- Focus: Electronics and supply-chain industry news
- Size: 6,384 article summaries and 62,151 sentences
- Time period: 2017 and 2022
- Source: Google News

Causal relations were extracted using two methods: (1) Pattern-based and (2) BERT-based.

Pattern-based extraction uses linguistic patterns to identify causal relations, based on CauseNet (Heindorf et al., 2020).

Rank	Linguistic Pattern	Rels				
(A) Directly $(n_{patterns} = 53)$						
1	[[cause]]/N -nsubj cause/VB +dobj [[effect]]/N	$904,\!385$				
2	[[cause]]/N -nmod:with associated/VBN -acl [[effect]]/N	$892,\!908$				
3	[[cause]]/N -nsubj lead/VB +nmod:to $[[effect]]/N$	$783,\!860$				
(B) Reverse-Engineered $(n_{patterns} = 477)$						
1	[[cause]]/N -nsubj led/VBD +nmod:to [[effect]]/N	$67,\!255$				
2	[[cause]]/N -nsubj produced/VBD +obj [[effect]]/N	$43,\!188$				
3	[[cause]]/N -nsubj brought/VBD +obj [[effect]]/N	35,065				

Table 1. Common linguistic patterns used.

- Identify shortest dependency path between two nouns
- Identify as causal based on a list of causal linguistic patterns

Original	Pattern-based Ex-	Post-processing	Pre-processing
	traction		for Clustering
imple-	• shortage \rightarrow	implement-	implement-
menting a	impact	ing a furlough	ing a furlough
furlough	• shortage \rightarrow fall	scheme aimed	scheme aimed
scheme aimed	• shortage \rightarrow	at mitigating the	at mitigating the
at mitigating	output	<arg1>impact</arg1>	<arg1>impact</arg1>
the impact of	Pattern:	of a fall in out-	of a fall in out-
a fall in out-	'[[cause]]/N	put	put
put brought	-nmod:by	brought on by	brought
on by a global	brought/VBN	a global chip	<arg0>on by a</arg0>
chip shortage.	+nmod:of [[ef-	<arg0>shortage</arg0>	global chip short-
- •	fect]]'	.'	age.'

Table 2. Processing of pattern-based extracted causal relations.

BERT-based extraction uses pre-trained models to get causal information, based on UniCausal (Tan et al., 2023).

- Pre-trained models trained on Causal Sentence Classification (CSC), Cause-Effect Span Detection (CESD) and Causal Pair Classification (CPC) tasks on external datasets
 - Causal sentences based on CSC: Takes arguments from CESD + post-processing
 - *Non-causal* sentences based on CSC: If sentence contains only one pair of arguments and if CPC finds them to be *Causal*, then these arguments are accepted.

Table 3.	Original	riginal BERT-Based Extraction			Post-Processing		
Processing		CSC	CESD		Final	Method	
FIDCESSING	Ford is shutting	0	<arg1>Ford is shut</arg1>	t-	<arg1>Ford is shutting its car factories</arg1>	Add	
of BERT-	its car factories in		ting its car factories	es	in India after <arg0>Ford In-</arg0>	Causal	
based	India after Ford		in India af	f-	dia racked up more than \$2bn in losses	Relations	
causal	India racked up		ter <arg0>Ford India</arg0>	ia	over the past decade.	based on	
causai	more than \$2bn		racked up more than \$2br	n		CPC	
relations.	in losses over the		in losses over the pas	st			
	past decade.		decade.				

RESULTS – EXTRACTION

It is important to focus on both precision-driven patternbased and recall-driven BERT-based approaches.

- Pattern-based approach: High precision, low recall
- BERT-based approach: High recall, low precision

Extraction						
Method	Sents	Sents	Rels	Avg Rel		
				Support		
Pattern-based	1,006	611	975	1.032		
BERT-based	19,250	15,702	19,192	1.003		
Total	20,255	15,902	20,086	1.008		

Table 4. Summary Statistics from Extraction step.

Extraction Method	Р	R	F1
Pattern-based	100.00	4.08	7.84
BERT-based	76.09	71.43	73.68
Both	75.00	73.47	74.23

Table 5. Performance metrics for extraction. Scores reported in percentages (%). Top score per column is in bold.

Causal relations were extracted using two methods: (1) Pattern-based and (2) BERT-based.

We wish to cluster the arguments that have similar meaning together into the same topic/ node.

- 1. Remove named-entities from span (<u>Stanford NER Tagger</u> – Finkel et al., 2005)
- 2. Generate BERT-based word embeddings from each span (SimCSE Gao et al., 2021)
- 3. Cluster spans using K-Means

Clustering helps to create denser graphs that allows for more meaningful causal relationships to be learnt.

	Before Clustering	After Clustering
No. of Unique Nodes, $ V $	35,230	3,000
No. of Unique Edges, $ E $	20,086	17,801
Total Weight, $\sum s$	20,254	19,965
No. of Subgraphs	15,686	1
Avg Clustering Coefficient	$9.81e^{-06}$	$1.75e^{-02}$
Avg Degree Centrality	$3.24e^{-05}$	$3.96e^{-03}$
Avg Eigenvector Centrality	$6.64e^{-05}$	$1.32e^{-02}$
Transitivity	$4.17e^{-04}$	$8.81e^{-03}$

Table 6. Graph summary statistics.

II. After clustering

© Copyright National University of Singapore. All Rights Reserved.

Applications

- Summarization:
 - Collect relations in news across time
 - Search and monitor on-going trends in news
- Answering causal questions and predicting future events
- Inferring transitive causal relations
- Trend monitoring

Our KG can be helpful for monitoring heated causal topics and news trends across time.

Conclusion

- For extraction, it is important to focus on both precision-driven pattern-based and recall-driven BERT-based approaches.
- Clustering creates denser graphs that allows for meaningful causal relationships to be learnt (E.g. causal chains).
- Our work can be replicated onto many other domains and has various real-life applications in the workplace.
- Future Directions:
 - Readability of nodes/ topics
 - Expand coverage

References

Heindorf, S.; Scholten, Y.; Wachsmuth, H.; Ngomo, A. N.; and Potthast, M. 2020. CauseNet: Towards a Causality Graph Extracted from the Web. In d'Aquin, M.; Dietze, S.; Hauff, C.; Curry, E.; and Cudré-Mauroux, P., eds., *CIKM* '20: The 29th ACM International Conference on Information and Knowledge Management, Virtual Event, Ireland, October 19-23, 2020, 3023–3030. ACM.

Tan, F. A.; Zuo, X.; and Ng, S.-K. 2023. UniCausal: Unified Benchmark and Repository for Causal Text Mining. In *Big Data Analytics and Knowledge Discovery*. Springer International Publishing.

Finkel, J. R.; Grenager, T.; and Manning, C. 2005. Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling. In *Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05)*, 363–370. Ann Arbor, Michigan: Association for Computational Linguistics.

Gao, T.; Yao, X.; and Chen, D. 2021. SimCSE: Simple Contrastive Learning of Sentence Embeddings. In *Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing*, 6894–6910. Online and Punta Cana, Dominican Republic: Association for Computational Linguistics.

Thank you.

- Link to Preprint: <u>https://arxiv.org/abs/2305.09359</u>
- For questions/ feedback, feel free to contact us:

Fiona Anting Tan Institute of Data Science National University of Singapore, Singapore tan.f@u.nus.edu