Event Causality Identification with Causal News Corpus - Shared Task 3, CASE 2022

Fiona Anting Tan, Hansi Hettiarachchi, Ali Hürriyetoglu, Tommaso Caselli, Onur Uca, Farhana Ferdousi Liza, Nelleke Oostdijk

Fiona Anting Tan Institute of Data Science National University of Singapore, Singapore tan.f@u.nus.edu

TASK

D1 Event Causality Identification Shared Task involved two subtasks related to Classification and Span Detection.

DATASET

Subtask 1 worked directly on the Causal News Corpus (CNC) (Tan et al., 2022).

	Train	Dev	Test	Total
K-Alpha	34.42	29.77	48.55	34.99

Subtask 1 Inter-annotator Agreement Scores. Reported in percentages.

Stat.	Label	Train	Dev	Test	Total
#	Causal	1603	178	176	1957
Sent-	Non-causal	1322	145	135	1602
ences	Total	2925	323	311	3559
Avg.	Causal	35.48	36.86	41.27	36.13
#	Non-causal	27.34	27.35	30.25	27.59
words	Total	31.80	32.59	36.49	32.28

Subtask 1 Data Summary Statistics.

- Data Source: Causal News Corpus (CNC) (Tan et al., 2022)
 - 869 news documents
 - 3,559 English sentences
- A sentence is *Causal* if "one argument provides the reason, explanation or justification for the situation described by the other"(Webber et al., 2019) and contains at least a pair of events.

DATASET

03

We added annotations for some *Causal* sentences from CNC with Cause, Effect and Signal spans for Subtask 2.

Metric	Span	Train+Dev	Test	Total
	Cause	30.57	15.11	23.88
Exact	Effect	36.30	19.86	29.19
Match	Signal	27.92	29.21	28.48
-	Total	7.84	5.81	6.96
One	Cause	57.55	39.86	49.90
Side	Effect	60.90	45.42	54.21
Bound	Signal	31.93	32.96	32.37
Bound -	Total	24.05	22.25	23.27
	Cause	63.65	49.18	57.39
Token	Effect	64.66	49.88	58.27
Overlap	Signal	32.09	33.15	32.55
=	Total	26.94	27.78	27.31
	Cause	46.36	42.51	44.32
K- Alpha	Effect	57.18	41.89	49.89
	Signal	29.30	23.42	27.08
-	Total	50.90	41.54	46.27

Subtask 2 Inter-annotator Agreement Scores. Reported in percentages.

- A **Cause** is a reason, explanation or justification that led to an **Effect**.
- **Signals** are words that help to identify the structure of the discourse.

Stat.	Train	Dev	Test	Total
# Sentences	160	15	89	264
# Relations	183	18	119	320
Avg. rels/sent	1.14	1.20	1.34	1.21
Avg. # words	17.21	16.13	28.45	20.94
Cause	6.52	7.28	12.76	8.89
Effect	7.80	6.44	10.20	8.62
Signal	1.55	1.60	1.36	1.47
Avg # signals/rel	0.67	0.56	0.82	0.72
Prop. of rels w/ signals	0.64	0.56	0.76	0.68

Subtask 2 Data Summary Statistics.

EVALUATION

We provided multiple evaluation metrics, but model performance was eventually ranked by F1.

- The following evaluation metrics were provided:
 - Subtask 1: Accuracy, Binary Precision (P), Binary Recall (R), Binary F1 and Matthews Correlation Coefficient
 - Subtask 2: Macro P, R and F1 based on word labels
- Leader board was ranked by F1 for both tasks
- For Subtask 2, to handle predictions for examples with multiple causal relations:
 - If more predictions (p) are provided than true relations (n), we only consider the first n relations.
 - If fewer predictions (p) are provided than true relations (n), we assume the missing n-p relations have all "Other" tokens.
 - Once n=p, we calculate every combination of pairs of prediction and true relations and retain the combination that gives us the highest score.

COMPETITION

We used the Codalab website to host our competition.

CodaLab Search Competitions My Competitions Help Sign Up Sign In Competition Causal News Corpus - Event Causality Shared Task 2022 Organized by tanfiona - Current server time: Nov. 17, 2022, 6:42 a.m. UTC First phase Feb. 25, 2022, midnight UTC Aug. 31, 2022, 11:59 p.m. UTC Learn the Details Participate Forums 🔊 Overview Causal News Corpus Evaluation **Event Causality Identification Shared Task** Terms and Conditions We invite you to participate in the CASE-2022 Shared Task: Event Causality Identification with Causal News Corpus. Modelling and Results The task is being held as part of the 5th Workshop on Challenges and Applications of Automated Extraction of

https://codalab.lisn.upsaclay.fr/competitions/2299#learn_the_details

COMPETITION

06 Timeline

Timeline of competition.

COMPETITION

There were 17 active participants who made over 100 submissions on the test set.

Number of teams per stage of competition.

Subtask	Finished	Failed	Total
Subtask 1	58	8	66
Subtask 2	12	24	36

Number of submissions received for test set.

RESULTS

08 The best F1 score for Subtask 1 was 86.19%.

Rank	Team Name	Codalab Username	R	Р	F1	Acc	MCC
1	CSECU-DSG (Aziz et al., 2022)	csecudsg	88.64	83.87	86.19	83.92	67.14
2	ARGUABLY (Kohli et al., 2022)	guneetsk99	91.48	81.31	86.10	83.28	66.02
3	LTRC (Adibhatla and Shrivastava, 2022)	hiranmai	88.64	82.11	85.25	82.64	64.51
4	NLP4ITF (Krumbiegel and Decher, 2022)	pogs2022	88.07	82.45	85.16	82.64	64.49
5	IDIAPers (Burdisso et al., 2022)	msingh	87.50	82.80	85.08	82.64	64.49
6	NoisyAnnot (Nguyen and Mitra, 2022)	thearkamitra	88.07	82.01	84.93	82.32	63.83
7	SNU-Causality Lab (Kim et al., 2022)	JuHyeon_Kim	90.34	79.50	84.57	81.35	62.04
8	LXPER AI Research	brucewlee	86.36	82.61	84.44	81.99	63.18
9	1Cademy (Nik et al., 2022)	nika	86.36	81.72	83.98	81.35	61.85
10	-	quynhanh	85.80	79.06	82.29	79.10	57.19
11	BERT Baseline (Tan et al., 2022a)	tanfiona	84.66	78.01	81.20	77.81	54.52
12	GGNN (Trust et al., 2022)	PaulTrust	88.07	74.88	80.94	76.53	52.05
13	LSTM Basline (Tan et al., 2022a)	hansih	84.66	72.68	78.22	73.31	45.15
14	Innovators	lapardnemihk9989	78.98	72.02	75.34	70.74	39.81
15	-	necva	81.25	59.09	68.42	57.56	9.44

Subtask 1 Leaderboard.

ERROR ANALYSIS

Many examples (100/311) in the test set could be predicted correctly by all participants.

RESULTS

10 The best F1 score for Subtask 2 was 54.15%.

Ra-	Teem Neme	Codalab	Overall			
nk	Team Name	Username	R	Р	F1	Acc
1	1Cademy (Chen et al., 2022)	gezhang	53.87	55.09	54.15	43.15
2	IDIAPers (Fajcik et al., 2022)	msingh	47.62	51.21	48.75	40.83
3	SPOCK (Saha et al., 2022)	spock	43.75	57.62	47.48	36.87
4	LTRC (Adibhatla and Shrivastava, 2022)	hiranmai	5.65	2.34	3.23	33.03
5	Random Baseline	tanfiona	0.30	0.89	0.45	21.94

Subtask 2 Leaderboard.

ERROR ANALYSIS

Most examples were predicted wrongly by all participants.

12 Conclusion & Future Work

- Two subtasks:
 - 1) Causal Event Classification, and
 - 2) Cause-Effect-Signal Span Detection.
- Each subtask attracted predictions from models that beat our baselines.
- Next iteration:
 - More data for Subtask 2!

Thank you.

Fiona Anting Tan tan.f@u.nus.edu https://github.com/tanfiona/CausalNewsCorpus

© Copyright National University of Singapore. All Rights Reserved.