

UniCausal: Unified Benchmark and Repository for Causal Text Mining

DAWAK 2023, 28 – 30 August 2023, Penang, Malaysia

Fiona Anting Tan, Xinyu Zuo and See-Kiong Ng https://github.com/tanfiona/UniCausal

https://link.springer.com/chapter/10.1007/978-3-031-39831-5_23

Extracting information about causal relationships from text have important applications in NLP.

- Causal text mining relates to the extraction of causal information from text. Given an input sequence, we are interested to know if and where causal information occurs.
- Extracted causal information is useful for various downstream NLP challenges like: summarization, prediction, natural language understanding, etc.

Constructing and interpreting causal knowledge graphs from news. (Tan et al., AAAI-SS 2023) Panasonic.

Fiona Anting Tan, Debdeep Paul, Sahim Yamaura, Miura Koji, and See-Kiong Ng. 2023. Constructing and Interpreting Causal Knowledge Graphs from News. In *Proceedings of the AAAI Summer Symposium on AI for FinTech, 2023*.

Parts Purchaser for EV Batteries

- Purchaser can search for relevant nodes to understand about the factors that affect battery demand from KG
- 2. Purchaser can set these *Cause* topics as new alerts

Fiona Anting Tan, Debdeep Paul, Sahim Yamaura, Miura Koji, and See-Kiong Ng. 2023. Constructing and Interpreting Causal Knowledge Graphs from News. In *Proceedings of the AAAI Summer Symposium on AI for FinTech, 2023*.

Search Node: battery_batteries_demand_solid_growing

Identified Causes:

- *fuel_environmental_concerns_increasing_costs:* The increasing high fuel costs and environmental concerns
- *battery_relationship_suppliers_close_industry:* together with the TESLA project ... promoting as part of the European battery projects
- *electric_vehicles_adoption_accelerated_growing:* the electric vehicle revolution

•••

What does it mean to design a model that successfully extracts causal relations from text?

	Corpus	Causal Example				
Transf	AltLex	<pre><arg0>In the Philippines , Washi</arg0> caused <arg1>at least 1,268</arg1></pre>				
• Type of		deaths .				
annotations	BECAUSE	<arg0>Having only a Republican measure</arg0> makes <arg1>the</arg1>				
		task harder.				
Domain covered	CTB	Iraq said it <arg1>invaded</arg1> Kuwait because of				
		<arg0>disputes</arg0> over oil and money.				
 Exclusion rules 	ESL	Ten <arg1>dead</arg1> in southern Iran <arg0>quake</arg0> .				
	PDTB	<arg1>And the firms are stretching their nets far and wide</arg1>				
		<argo>to do it</argo> .				
	$\operatorname{SemEval}$	The front <argo>wheels</argo> are making a <arg1>grinding</arg1>				
		noise.				

Table 1. Example data from the six causal text mining corpora.

Corpus	Source	Inter-sent	Linguistic	Arguments
AltLex (Hidey and McKeown, 2016)	News		AltLex	Words before/after signal
BECAUSE 2.0 (Dunietz et al., 2017b)	News, Congress Hearings		Explicit	Phrases
CausalTimeBank (CTB) (Mirza et al., 2014)	News	\checkmark	All	Event head word(s)
EventStoryLine V1.0 (ESL) (Caselli and Vossen, 2017)	News	\checkmark	All	Event head word(s)
Penn Discourse Treebank V3.0 (PDTB) (Webber et al., 2019)	News	\checkmark	All	Clauses
SemEval 2010 Task 8 (SemEval) (Hendrickx et al., 2010)	Web		All	Noun phrases

Table 2. Properties of six causal text mining corpora.

UniCausal focuses on three tasks in causal text mining.

Figure 1. A two-sentence example that contains causal relations.

We formatted six datasets into a consistent format for causal text mining.

© Copyright National University of Singapore. All Rights Reserved.

Table 3. Example data in UniCausal.

We formatted six datasets into a consistent format for causal text mining.

corpus	because	
doc_id	Article247_327.ann	
sent_id	3	
eg_id	1	
index	because_Article247_327.ann_3_1	
text	They will then score one point for every subsequent issue or broadcast or Internet posting after the first offense is noted by Chatterbox if they continue not to report said inconvenient factand an additional two points on days when the news organization runs a follow-up without making note of said inconvenient fact.	
text_w_pairs	<arg1>They will then score one point for every subsequent issue or broadcast or Internet posting after the first offense is noted by Chatterbox</arg1> if <arg0>they continue not to report said inconvenient fact</arg0> and an additional two points on days when the news organization runs a follow-up without making note of said inconvenient fact.	
seq_label	1	Γ
pair_label	1	
context		ſ
num_sents	1	

corpus	because	
doc_id	Article247_327.ann	
sent_id	3	
eg_id	2	
index	because_Article247_327.ann_3_2	
text	They will then score one point for every subsequent issue or broadcast or Internet posting after the first offense is noted by Chatterbox if they continue not to report said inconvenient factand an additional two points on days when the news organization runs a follow-up without making note of said inconvenient fact.	
text_w_pairs	<arg1>They will then score one point (ARG1>They will then score one point (ARG0>every subsequent issue or broadcast or internet posting after the first offense is noted by Chatterbox if they continue not to report said inconvenient factand an additional two points on days when the news organization runs a follow-up without</arg1>	t
aan lahal	making note of said inconvenient fact. (III) Pa	nir
seq_iabel		
pair_label	1	
context		
num_sents	1	

We formatted six datasets into a consistent format for causal text mining.

- Train-test splits: Followed original corpora recommendations
- Limitations: We restricted our repository to examples that are <=3 sentences-long and contain <=3 causal relations.

		(I)	(II)	(I)	II)
		Seq		Span	Pair	
Corpus	Split	Non-	Causal	Causal	Non-	Causal
		causal			causal	
AltLex	Train	277	300	300	296	315
	Test	286	115	115	289	127
BEC-	Train	183	716	716	266	902
AUSE	Test	10	41	41	14	46
CTB	Train	1,651	234	-	3,047	270
	Test	274	42	-	444	48
ESL	Train	957	1,043	-	-	-
	Test	119	113	-	-	-
PDTB	Train	24,901	8,917	8,917	32,587	9,809
	Test	5,796	2,055	2,055	7,694	2,294
Sem-	Train	6,976	999	-	6,997	1,003
Eval	Test	2,387	328	-	2,389	328
Tot	al	43,817	14,903	12,144	54,023	15,142

Table 5. UniCausal's data sizes split by corpus source and task.

METHODOLOGY – DATA

We wrote a custom `load_cre_dataset` function so that users can work with the data directly by calling the data name.

```
In [2]:
           from datasets.unifiedcre import load cre dataset, available datasets
           print('List of available datasets:', available datasets)
           .....
            Example case of loading AltLex and BECAUSE dataset,
            without adding span texts to seq texts, span augmentation or user-provided datasets,
            and load both training and validation datasets.
            .....
           load cre dataset(dataset name=['altlex', 'because'], do train val=True, data dir='../data')
        List of available datasets: ['altlex', 'because', 'ctb', 'esl', 'esl2', 'pdtb', 'semeval2010t8', 'cnc', 'causenet', 'c
        ausenetm'l
                                                    Out[2]: (DatasetDict({
                                                                span validation: Dataset({
                                                                   features: ['corpus', 'index', 'text', 'label', 'ce tags', 'ce tags1', 'ce tags2'],
          Figure 3. Screenshot of
                                                                   num rows: 156
                                                                })
          tutorial on Github
                                                                span train: Dataset({
                                                                   features: ['corpus', 'index', 'text', 'label', 'ce tags', 'ce tags1', 'ce tags2'],
                                                                   num rows: 1016
                                                                })
                                                             }),
                                                            DatasetDict({
                                                                seq validation: Dataset({
                                                                   features: ['corpus', 'index', 'text', 'label'],
                                                                   num rows: 296
                                                                })
                                                                pair validation: Dataset({
                                                                   features: ['corpus', 'index', 'text', 'label'],
                                                                   num rows: 476
                                                                })
                                                                seq train: Dataset({
    © Copyright National University of Singapore. All Rights Reserved.
                                                                   features: ['corpus', 'index', 'text', 'label'],
                                                                   num rows: 460
```

10

METHODOLOGY – DATA

`load_cre_dataset` formats all the examples into inputs that can be fed directly into Huggingface pipelines.

(I) Seq

{'corpus': 'altlex', 'index': 'altlex_altlex_dev.tsv_0_0', 'text': "The Bhopal disaster , also referred to as the Bhop al gas tragedy , was a gas leak incident in India , considered the world 's worst industrial disaster .", 'label': 0}

(II) Span

{'corpus': 'altlex', 'index': 'altlex_altlex_dev.tsv_4_0', 'text': ['The', 'U.S.', 'Supreme', 'Court', 'refused', 't
o', 'hear', 'an', 'appeal', 'of', 'the', 'decision', 'of', 'the', 'lower', 'federal', 'courts', 'in', 'October', '199
3', ',', 'meaning', 'that', 'victims', 'of', 'the', 'Bhopal', 'disaster', 'could', 'not', 'seek', 'damages', 'in',
'a', 'U.S.', 'court', '.'], 'label': 1, 'ce_tags': ['B-C', 'I-C', 'I-E', '

(III) Pair

{'corpus': 'altlex', 'index': 'altlex_altlex_dev.tsv_0_0', 'text': "<ARG1>The Bhopal disaster , also referred to</ARG1
> as <ARG0>the Bhopal gas tragedy , was a gas leak incident in India , considered the world 's worst industrial disast
er .</ARG0>", 'label': 0}

For our baseline models, we fine-tuned pretrained BERT.

Class Label

Figure 4: BERT for Sequence Classification (Devlin et al., 2018)

For our baseline models, we fine-tuned pretrained BERT.

Figure 5: BERT for Token Classification (Devlin et al., 2018)

Our baseline models are available on Huggingface Hub.

all Text Classification	Causal Ex 🗸	# Text Classification	Non-causa 🗸
He pushed her, causing her to fall.	1.	He is Billy and he pushed her.	1
Compute		Compute	
Computation time on cpu: 0.118 s		Computation time on cpu: 0.032 s	
LABEL_1	0.990	LABEL_0	0.932
LABEL_0	0.010	LABEL_1	0.068
JSON Output	Maximize	JSON Output	🛛 Maximize

tanfiona/unicausal-seq-baseline

i Text Classification \circ Updated Jul 15, 2022 \circ \pm 128 \circ \heartsuit 1

Figure 6. Pretrained model checkpoints on Huggingface Hub

© Copyright National University of Singapore. All Rights Reserved.

tanfiona/unicausal-pair-baseline

🕼 Text Classification 🔹 Updated Jul 17, 2022 🔹 🖄 3

tanfiona/unicausal-tok-baseline

& Token Classification \circ Updated Jul 17, 2022 $\circ \pm 147$

RESULTS

We provide initial baseline scores across datasets and tasks for the causal text mining community to beat.

	(I) S	equence	Classifi	cation	(II) Span Detection			(III) Pair Classification			
Test Set	Р	R	F1	Acc	Р	R	F1	Р	R	F1	Acc
All	71.13	69.14	70.10	86.27	46.33	60.35	52.42	85.44	83.93	84.68	93.68
	± 0.80	± 1.60	± 0.58	± 0.15	± 1.22	± 0.30	± 0.90	± 0.96	± 0.44	± 0.27	± 0.16
AltLex	50.76	63.48	56.37	71.87	27.74	42.99	33.72	82.60	87.09	84.76	90.43
	± 1.61	± 4.60	± 2.49	± 1.19	± 1.20	± 0.85	± 1.12	± 1.99	± 1.53	± 0.66	± 0.55
BECAUSE	92.32	70.24	79.77	71.37	32.51	44.30	37.47	87.93	94.78	91.21	86.00
	± 1.69	± 2.04	± 1.68	± 2.24	± 2.82	± 2.33	± 2.57	± 1.73	± 1.94	± 1.18	± 1.90
CTB	42.37	66.19	51.58	83.48	-	-	-	75.66	72.50	73.94	95.04
	± 2.11	± 4.26	± 1.82	± 1.21				± 3.61	± 6.81	± 4.68	± 0.78
ESL	76.11	67.43	71.45	73.79	-	-	-	-	-	-	-
	± 2.04	± 3.45	± 1.89	± 1.34							
PDTB	72.59	66.34	69.31	84.63	47.77	61.54	53.78	84.56	82.04	83.28	92.43
	± 0.61	± 1.63	± 0.70	± 0.17	± 1.22	± 0.29	± 0.88	± 1.17	± 0.46	± 0.36	± 0.23
$\operatorname{SemEval}$	73.39	89.51	80.64	94.81	-	-	-	93.38	96.10	94.71	98.70
	± 1.18	± 1.59	± 0.46	± 0.16				± 0.88	± 0.59	± 0.23	± 0.07

Table 6. Mean and standard deviation of performance metrics for different test sets across the three tasks. All models were trained on all six datasets, where applicable.

RESULTS

We compare the F1 scores when training and testing on different corpus to review cross-corpora compatibility.

(I) Sequence Classification

				Test Set				_	
Training Set	All	AltLex	BECAUSE	CTB	ESL	PDTB	SemEval	1)	Training on
All	70.10 ± 0.58	56.37 ± 2.49	79.77 ± 1.68	51.58 ± 1.82	71.45 ± 1.89	69.31 ± 0.70	80.64 ± 0.46	• • •	all datasets
AltLex	$32.93 \pm 3.57^{***}$	51.85 ± 2.53	$36.47 \pm 11.18^{***}$	$38.21 \pm 6.20*$	$53.30 \pm 8.37^{**}$	$22.91 \pm 5.79^{***}$	$55.83 \pm 6.68^{***}$		anualasets
BECAUSE	$39.15 \pm 0.99^{***}$	$47.02 \pm 1.52^{**}$	90.77 ±2.22***	25.17 ±1.34***	$63.49 \pm 1.94^{**}$	$42.49 \pm 0.68^{***}$	$23.71 \pm 1.93^{***}$		returned the
CTB	$33.49 \pm 5.48^{***}$	55.91 ± 7.63	$54.73 \pm 9.40^{**}$	$63.65 \pm 5.55^{**}$	$33.26 \pm 15.44^{**}$	$25.97 \pm 3.73^{***}$	$51.76 \pm 13.85^{**}$		best
ESL	$39.62 \pm 0.89^{***}$	$46.29 \pm 1.15^{**}$	$90.12 \pm 1.05^{***}$	$30.84 \pm 1.35^{***}$	$81.21 \pm 2.35^{***}$	* 42.55 ±1.25***	$26.15 \pm 2.62^{***}$		performanc
PDTB	$60.99 \pm 0.76^{***}$	$48.94 \pm 1.88^{**}$	$69.61 \pm 2.16^{**}$	$39.54 \pm 1.88^{***}$	$38.71 \pm 3.15^{***}$	$70.31 \pm 0.56*$	$19.75 \pm 3.35^{***}$		e across all
SemEval	$28.25 \pm 0.86^{***}$	$28.95 \pm 1.74^{***}$	$16.91 \pm 3.40^{***}$	$38.51 \pm 3.44^{**}$	$45.95 \pm 3.50^{***}$	$10.11 \pm 1.61^{***}$	$89.58 \pm 0.71^{***}$		tooko by o
									lasks by a
(II) Span Det	ection								large
		Tes	st Set		_				margin.
Training Set	All	AltLex	BECAUSE	PDTB	_				
All	52.42 ± 0.90	33.72 ± 1.12	37.47 ± 2.57	53.78 ± 0.88	_			2)	The
AltLex	$6.20 \pm 0.74^{***}$	$21.45 \pm 1.87^{***}$	$11.51 \pm 1.63^{***}$	$5.47 \pm 0.76^{***}$				_,	deneralized
BECAUSE	$12.74 \pm 0.35^{***}$	$7.38 \pm 2.19^{***}$	37.79 ± 5.77	$12.60 \pm 0.34^{***}$					model
PDTB	51.97 ± 0.48	$6.73 \pm 0.94^{***}$	35.84 ± 2.42	$55.02 \pm 0.38*$					
					_				trained on
(III) Pair Cla	sification								all datasets
			Tes	t Set					did not
Training Set	All	AltLex	BECAUSE	CTB	PDTB	SemEval			alwaye
All	84.68 ± 0.27	84.76 ± 0.66	91.21 ± 1.18	73.94 ± 4.68	83.28 ± 0.36	94.71 ± 0.23	_		always
AltLex	$31.83 \pm 3.93^{***}$	$80.57 \pm 2.48^*$	$48.44 \pm 20.00^{**}$	$20.06 \pm 7.14^{***}$	$25.11 \pm 8.75^{***}$	$57.72 \pm 14.52^{**}$			return the
BECAUSE	$36.40 \pm 0.64^{***}$	$47.99 \pm 1.33^{***}$	90.01 ± 1.95	$23.58 \pm 1.52^{***}$	$38.39 \pm 0.37^{***}$	$25.23 \pm 2.02^{***}$			best
CTB	$20.17 \pm 5.78^{***}$	$19.16 \pm 15.64^{***}$	$22.00 \pm 10.92^{***}$	73.29 ± 6.14	$7.02 \pm 6.06^{***}$	$63.69 \pm 5.65^{***}$			performanc
PDTB	$68.13 \pm 0.88^{***}$	$40.34 \pm 1.52^{***}$	$82.59 \pm 2.17^{***}$	$26.74 \pm 2.42^{***}$	83.70 ± 0.34	$33.64 \pm 1.76^{***}$			e for each
SemEval	$26.66 \pm 1.86^{***}$	$37.07 \pm 6.58^{***}$	$25.70 \pm 11.46^{***}$	$50.63 \pm 1.74^{***}$	$8.08 \pm 3.20^{***}$	94.80 ± 0.28			
							_		ramie

Table 7. Mean and standard deviation of F1 score across different training and test set combinations.

CONCLUSION

We propose UniCausal, a unified resource and benchmark for causal text mining.

- Our codes were designed to allow researchers to work on some or all datasets and tasks, while still comparing their performance fairly against us or others. Researchers can easily include new datasets too.
- We provided evaluation metrics per dataset as an initial benchmark for future researchers to compete against.
- Our codes and processed data is available online. Our trained baseline model checkpoints are uploaded to Huggingface Hub.
- We believe that a unified model that learns from diverse objectives and knowledge sources will be more adaptable and generalizable. We hope to see researchers build such models in the future using our repository.

Thank you.

- Link to our repository: <u>https://github.com/tanfiona/UniCausal</u>
- For questions/ feedback, feel free to contact us:

Fiona Anting Tan Institute of Data Science National University of Singapore, Singapore tan.f@u.nus.edu